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SUMMARY

An algorithm for a time accurate incompressible Navier–Stokes solver on an unstructured grid is pre-
sented. The algorithm uses a second order, three-point, backward di�erence formula for the physical
time marching. For each time step, a divergence free �ow �eld is obtained based on an arti�cial com-
pressibility method. An implicit method with a local time step is used to accelerate the convergence
for the pseudotime iteration. To validate the code, an unsteady laminar �ow over a circular cylinder
at a Reynolds number of 200 is calculated. The results are compared with available experimental and
numerical data and good agreements are achieved.
Using the developed unsteady code, an interaction of a Karman vortex street with an elliptical leading

edge is simulated. The incident Karman vortex street is generated by a circular cylinder located upstream.
A clustering to the path of the vortices is achieved easily due to �exibility of an unstructured grid. Details
of the interaction mechanism are analysed by investigating evolutions of vortices. Characteristics of the
interactions are compared for large- and small-scale vortex streets. Di�erent patterns of the interaction
are observed for those two vortex streets and the observation is in agreement with experiment. Copyright
? 2004 John Wiley & Sons, Ltd.

KEY WORDS: unstructured grid; time accurate incompressible Navier–Stokes solver; arti�cial compre-
ssibility; vortex street interaction

1. INTRODUCTION

There are two main types for time accurate incompressible Navier–Stokes solvers. One is
based on the projection method in which pressure �eld at each time step is calculated from
a Poisson equation [1]. The other is based on the arti�cial compressibility method with a
pseudotime subiteration [2]. In this study, the arti�cial compressibility method is adapted and
the convergence for the pseudotime iteration is accelerated using an implicit method with a
local time stepping. The augmentation with the arti�cial compressibility makes it possible to
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use several schemes that are developed for general hyperbolic type conservation laws such as
the �ux splitting method for inviscid �ux calculation. Roe’s �ux di�erence splitting method is
used and dependent variables at control surfaces are reconstructed based on gradients which
are calculated using Green–Gauss theorem. For a physical time marching, a time derivative
in the momentum equation is replaced with a second order three-point backward di�erence
formula. Since the scheme is stable regardless of the physical time step size, the physical
time step can be increased arbitrary provided that the variation of the �ow �eld in time can
be accurately resolved by the second order di�erence formula.
The interactions of vorticity �elds with solid boundaries have been investigated related to

�ow induced vibration or noise generation. Among those vorticity �eld and body interactions,
the cases of a body in the wake of another body are frequent. For instance, tubes in the
wake of upstream tubes in a heat exchanger or rotor blades passing through the wakes of
stator blades can be regarded as the case of a body in the wake of another body. Gursul
and Rockwell [3] carried out an experimental study for the vortex street impinging upon an
elliptical leading edge. During the interactions, the structures of vortices are exposed to rapid
distortions near the leading edge. Furthermore, the vortices may be severed and a secondary
vortex can be formed by boundary layer separation. So the �ow �eld may be very complicated.
Although the �ow visualization results provide valuable information to understand evolution
of the vorticity �eld, it is not clear how the distortion of a streakline or timeline pattern is
related to the distortion of a vorticity �eld. Kaya and Kaykayoglu [4] used a discrete vortex
method to simulate the previous experiments. However, the discrete vortex method cannot
include some important features such as interaction of the incident vorticity �eld with the
boundary layer vorticity.
Navier–Stokes calculations can be helpful to analyse such a complicated �ow structure by

providing details of �ow structure at any location, which cannot be furnished accurately in
experiments. As an instance, an instantaneous vorticity �eld should be calculated based on a
�nite di�erence formula based on the measured velocity �eld in the experiment [3]. Although
the measurement stencil is suitable to resolve the velocity �eld, it does not imply that the
stencil is �ne enough to use the numerical di�erentiation to obtain accurate vorticity �eld.
Using clustered grid along the path of the vortices, accurate vorticity �elds at any desired
instances can be provided by Navier–Stokes calculations on unstructured grids.
Qualities of structured grids around multi-bodies depend on the arrangement and con�gu-

rations of the bodies. Additionally it is crucial to maintain the grid resolution along the path
of the vortices for the �ow �elds containing the convecting vortices. Therefore, it may cause
di�culties for structured grids if the incident vortex street is shifted from the centreline of
the downstream body. In fact, these arrangements are as the experiments are carried out [3].
Due to its inherent �exibility in the grid generation, the unstructured grid method provides
e�cient way to analyse these kinds of �ow �elds. For unstructured grids, the arrangement
and con�gurations of bodies do not cause any di�culty and the clustering to arbitrary loca-
tions can be achieved by simply assigning a few source points at the desired locations in the
background grid.

2. NUMERICAL METHOD

In this study, the developed steady solver [5] is expanded to calculate an unsteady �ow. The
governing equations are the time-dependent Navier–Stokes equations for incompressible �ow.
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For an arbitrary control volume, �, whose control surface is @�, the governing equations can
be written as an integral form as follows:
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A node-based �nite volume method is used to discretize the governing equations spatially
where all the dependent variables are de�ned at vertices of the grid. A non-overlapping control
volume surrounding each node is de�ned by control surface portions that are connecting the
centroid of the element to the midpoint of boundary of the element.
Time derivatives in the momentum equations are replaced with a second order, three-point,

backward di�erence formula.
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Then the discretized equations for the dependent variables of ith node at nth time step can
be written as follows.
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where Vi is the size of the control volume of the ith node. The Ri(pn; un; vn) is the residual
at the ith node calculated by the numerical �uxes through the control surface. The numerical
�uxes are calculated based on the dependent variables at nth time step. To couple the pressure
and velocity �elds, the arti�cial compressibility with respect to the pseudotime � is introduced
as follows.
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where R̃i(p̃; ũ; ṽ) is the residual calculated based on (p̃; ũ; ṽ) with the modi�cation in the
continuity equation due to the arti�cial compressibility,

F̃inv =
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where � is the arti�cial compressibility parameter.
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Subiteration is carried out to get steady state solution of (p̃; ũ; ṽ) with respect to the pseu-
dotime �. Once the steady solution is obtained, the �ow �eld at nth time step (pn; un; vn) in
Equation (4) is replaced with the intermediate �ow �eld (p̃; ũ; ṽ). For the subiteration with
respect to the pseudotime, �, an implicit time marching based on linearized Euler backward
method with the local time stepping is used [5]. For m+1th pseudotime step, Euler backward
di�erence can be written as follows.
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Equation (7) can be linearized as follows.
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where @R̃(p̃m; ũm; ṽm)=@(p̃m; ũm; ṽm) is the Jacobian matrix of the residual vector with respect
to the dependent variable vector. Although the scheme is stable at very large value of the
local Courant number based on the pseudotime step size, ��, there is an optimal value for the
total calculation time due to the fact that the large value of the local Courant number reduces
diagonal dominance of the Jacobian matrix. A typical value of the local Courant number used
in this study is 200. Since the physical time step, �t, does not cause any instability related to
the Courant number, it can be increased arbitrary provided that the physical time step, �t, is
small enough to resolve the variation of the �ow �eld in time by the second order three-point
backward di�erence formula.
Inviscid �ux through each control surface portion assigned to each edge is calculated using

Roe’s �ux di�erence splitting method [6].

Finv =
1
2
[F(QL) + F(QR)]− 1

2
|Â|(QR −QL) (9)

where QL and QR are dependent variable vectors at the left and right sides of the control
surface portion. To obtain a higher order accuracy, the QL and QR are reconstructed based
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on the Taylor series expansion. Using the Green–Gauss theorem, the gradients in the Taylor
series expansion are calculated as follows.

∇Q≈ 1
Volume

∮
@�
Qn dS (10)

To calculate viscous �uxes, the gradients of velocities at each element are calculated using
the Green–Gauss theorem again. However, for these gradients of velocities, the integration in
Equation (10) is carried out along the boundary of the element instead of the control surface.
Based on the gradients of velocities at each element and control surface potions, the viscous
�ux contributions to nodes of the element are calculated.
Contributions of viscous �uxes to the Jacobian matrix are calculated exactly. However,

some approximations are made for contributions of inviscid �uxes to the Jacobian matrix to
guarantee diagonal dominance of the matrix and to reduce memory requirement. Since exact
linearization of Roe’s �uxes can cause loss of the diagonal dominance, the Roe’s matrix, |Â|,
is taken as a frozen matrix during the Jacobian calculation [7]. To save memory requirements
for the Jacobian matrix, the e�ect of data reconstruction of QL and QR on the Jacobian
matrix is ignored so that QL and QR are taken as the dependent variable vectors at the
nodes. This approximation reduces the number of non-zero coe�cients in the Jacobian matrix
signi�cantly. Because the most part of the memory is used to save the non-zero coe�cients
of the Jacobian matrix, this approximation is crucial to reduce the memory requirement. Only
non-zero coe�cients of the Jacobian matrix are saved and the matrix structure is given using
the compressed row storage method [8].
On a body boundary, no slip condition is applied. The pressure at the body boundary

node is calculated based on a residual at the boundary node. To de�ne a closed control
volume for the body boundary node, the control surface portion on the body surface should
be added. However, the contribution of the �ux through that control surface portion to the
residual of continuity equation vanishes due to the zero normal velocity at the body boundary.
Dependent variables at in�ow boundary are �xed. At out�ow boundary, dependent variables
are extrapolated from dependent variables at neighbouring inside nodes.

3. RESULTS AND DISCUSSIONS

3.1. Flow over a circular cylinder at a Reynolds number of 200

To validate the code, unsteady laminar �ow over a circular cylinder at Reynolds number
of 200 is calculated. The Reynolds number is based on the free stream velocity and the
diameter of the cylinder. An unstructured grid is shown in Figure 1. The grid contains 26 578
nodes and 52 934 triangles. On the circular cylinder, 140 nodes are distributed. Far �eld
boundary is located at 20 diameters behind the cylinder. On the far �eld boundary 82 nodes
are distributed. For the viscous grid, the �rst layer height is 0.001 and layer heights are
increased by a geometric series with a factor of 1.15. The physical time step, �t, is 0.05.
Pseudotime step, ��, of each node is calculated so that the local Courant number of each
cell is 200. The arti�cial compressibility parameter, �, is 100. From a free-stream condition,
the �ow is started impulsively.
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Figure 1. Unstructured grid for �ow around a circular cylinder.
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Figure 2. Convergence history of residual of continuity equation.

In Figure 2, the behaviour of continuity equation residuals are shown as a function of iter-
ation step. After the asymmetric wake is fully developed, about ten pseudotime step iterations
are required for each physical time step to reduce the continuity equation residuals by four
digits. In Figure 2, the residuals at the �rst and the �nal pseudotime steps are indicated for
all physical time steps. The behaviour of the residuals of the �rst pseudotime steps is very
similar to the variation of the drag with respect to time as shown later. At the initial stage,
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Figure 3. Instantaneous vorticity and pressure contours of �ow over a circular
cylinder at a Reynolds number of 200.

there is abrupt change in the �ow �eld due to the acceleration from the rest and it causes
high level of residuals. When two symmetric vortices are located behind the cylinder, the
�ow �eld varies slowly and the residuals of the �rst pseudotime iterations are also small.
Although the residuals of the �rst pseudotime iterations increase as vortices are shed, the
residuals of the �nal pseudotime iterations can be decreased to the similar level with one
additional pseudotime iteration.
Figure 3 shows instantaneous vorticity and pressure contours. Vorticity contours show the

evolution of each vortex as it moves downstream clearly. Compared with recent numerical
results of Kiris [1], the centres of vortices are more closely aligned with the centreline of the
cylinder and the shapes of the contours are closer to concentric circles.
Time histories of drag and lift coe�cients are shown in Figure 4. The overall con�gurations

of time histories are very similar to that of the previous calculation [1] except the non-
dimensional time when the asymmetric wake starts to develop. For the periodic cycle, the
drag and lift coe�cients are: CD =1:303 ± 0:0357 and CL = ± 0:621. The Strouhal number
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Figure 4. Time history of drag and lift coe�cients of �ow over a circular
cylinder at a Reynolds number of 200.

Table I. Drag and lift coe�cients and Strouhal number of �ow over a circular cylinder
at a Reynolds number of 200.

CD CL St

Present 1:303± 0:0357 ±0:621 0:194
Experiments Wille (1960) 1.30 — —

Kovasznay (1949) — — 0.19
Numeric Kiris (2001) 1:27± 0:04 ±0:67 0.184

Farrant (2000) 1.36 ±0:71 0.196
Slaouti (1992) — ±0:62 0.196

Table II. Variations of drag and lift coe�cients and Strouhal number with respect to
physical time step size, �t.

�t CD=C∗
D CL=C∗

L St=St∗

0.025 1.0003 1.0002 1.0008
0:050∗ 1.0 1.0 1.0
0.100 0.9981 0.9955 0.9947
0.200 0.9962 0.9848 0.9776
0.300 0.9895 0.9404 0.9506
0.400 0.9754 0.8922 0.9165

∗Reference value.

is 0.194. In Table I, present results are compared with experimental results [9, 10] and other
calculations [1, 11, 12]. The present results are in good agreement with experimental and other
numerical results.
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Figure 5. Variation of estimated error with respect to physical time step size, �t.

To test the e�ects of numerical parameters on the �nal results, several cases are calculated
with variations on the parameters including the physical time step size, �t, total number of
nodes, Nnode, arti�cial compressibility, � and computational domain size, D=dcylinder. In Table II,
e�ects of the physical time step size, �t, on the drag and lift coe�cients and Strouhal number
are indicated. The physical time step size, �t, is varied from 0.025 to 0.4 which correspond
to 205 and 14 time steps per calculated period, respectively. Even though the physical time
step size, �t, is increased from 0.05 to 0.2, the changes in the results are less than 2.3%. In
Figure 5, the behaviour of the estimated errors with respect to the physical time step size, �t,
is shown. The estimated errors are de�ned as the deviations from the results at �t=0:025. It
can be seen that the slopes of the variations in a log–log diagram are very close to the slope
of a second-order scheme. In Table III, variations of the results are summarized with respect
to the grid size, the arti�cial compressibility parameter, �, and the computational domain size.
The table shows satisfactory behaviour of the results to convince the fact that the present grid
and computational domain size are �ne and large enough to get converged results. However,
the lift coe�cient show slight dependency on the arti�cial compressibility parameter, �, so
that the lift is increased by 3.6% and decreased by 2.4% as the arti�cial compressibility
parameter, �, is changed from 100 to 50 and 150.

3.2. Interaction of a Karman vortex street with an elliptical leading edge

Using the developed unsteady code, the interactions of the Karman vortex streets with an
elliptical leading edge are simulated which has been investigated experimentally by Gursul
and Rockwell [3]. The incident vortex streets are generated by upstream circular cylinders of
two di�erent diameters: Dcylinder=Dbody = 0:4 and 0.24, where Dbody is the thickness of the body.
Large and small cylinders correspond to large-scale and small-scale vortex streets, respectively.
The centres of the upstream cylinders are located at L=Dbody = 6 and �=Dbody = 0:4, where L
is the distance between the centre of the upstream cylinder and the leading edge of the body
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Table III. Variations of drag and lift coe�cients and Strouhal number with respect to total nodes
numbers, arti�cial compressibility parameter and computation domain size.

CD=C∗
D CL=C∗

L St=St∗

Nnode Variations with respect to numbers of total nodes
8475 1.025 1.0354 0.9865
14816 0.9945 0.9910 0.9927
26578∗ 1.0 1.0 1.0

� Variations with respect to arti�cial compressibility parameter, �
50. 1.011 1.036 1.003
100:∗ 1.0 1.0 1.0
150. 0.992 0.976 0.997

D=dcylinder Variations with respect to computational domain size D=dcylinder
10. 1.015 1.033 1.004
20:∗ 1.0 1.0 1.0
40. 0.995 0.993 0.996

∗Reference value.

and � is the distance between the centreline of the upstream cylinder and centreline of the
body. The ratio of major to minor axis of the elliptic leading edge is 5 : 1.
The Reynolds number based on the thickness of the body is 2500 and it is similar to that

of the experiment [3]. In the experiments, the incoming vortex street is generated using an
upstream plate instead of a cylinder and the Reynolds number based on the plate thickness
was in the range 309–619. Although the upstream cylinders seem to be large to guarantee
laminar wake, the diameters of upstream cylinders are decided to generate vortex streets which
have similar distances between two neighbouring vortices as explained later.

3.2.1. Case A: Interaction of a large-scale vortex street. In Figure 6, an unstructured grid
around an upstream cylinder and a downstream body is shown. It contains 108 356 nodes
and 215 681 triangles. First, a background grid is assigned by solving the Poisson equation
on a simple Cartesian grid with source distribution that controls grid size throughout the
whole domain. Sources are distributed at the centre of the upstream cylinder, leading edge of
the downstream body and expected path of the vortices. Then nodes are distributed on the
boundary surface so that the spacing between the nodes on the boundaries complies with the
required grid size at the location. Viscous grids are generated around the upstream cylinder
and the body using the advancing layer method. For the rest of the domain, the advancing
front method is used. Clustering to arbitrary locations with any desired grid size can be
achieved simply by adjusting the locations and strengths of the source distribution.
In Figure 7, instantaneous vorticity and pressure contours are shown. Due to the e�ect of

the downstream body, rapid distortions of vortices occur ahead of the leading edge. Near the
leading edge, the vortices of counter-clockwise rotation move downward and collide with the
leading edge of the body. Then the row of vortices of counter-clockwise rotation loses its
identity as a row of vortices. In the vorticity contours, some vortices of counter-clockwise
rotation can be identi�ed after the collision. However, it can be seen from the pressure
contours that the strength of the vortex diminishes immediately after the collision. Contrary
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Plate 1. Eight instantaneous vorticity contours in one period of an interaction of a vortex
street with an elliptical leading edge (large-scale vortex street).
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Figure 6. Unstructured grid for an interaction of Karman vortex street with an elliptical leading edge.

to the vortices of counter-clockwise rotation, the vortices of clockwise rotation move upward
near the leading edge. Although the strengths of vortices are decreased after the interaction,
the row of vortices of clockwise rotation maintains its identity clearly after the interaction.
In the experiments of Gursul [3], two di�erent interaction types are observed when the

centreline of the incoming vortex street is shifted from the centreline of the elliptical leading
edge. For the cases where the incoming vortex street is small-scale, it is observed that two rows
of vortices maintain their identities as rows of vortices throughout the interaction. However,
as the scale of the incoming vortex street is increased, one row of vortices loses its identity
as a row of vortices. The latter corresponds to the case where the ratio of the distance
between neighbouring vortices in a row to the diameter of the after body is 1.62. Although
it is not clear to compare the scale of incoming vortex street in the experiment and that of
this calculation due to the di�erence in the vortex street generation, the distances between
the neighbouring vortices in a row of the incoming vortex street are similar for both cases.
However, the distance between the centrelines of vortex street and the elliptical leading edge
is larger than the distance in the experiments, �=Dbody = 0:16.
After the interaction with the leading edge, the pressure distribution of the body surface

is dominated by the row of vortices of clockwise rotation. In the vorticity contours, small
vortices of clockwise rotation on the body surface can be seen. These are secondary vortices
generated by boundary layer separation due to the existence of the vortex of counter-clockwise
rotation near the body surface. The generation of the secondary vortex due to the separation
can be seen clearly from the instantaneous velocity �eld in Figure 8. Due to the vortex of
counter-clockwise rotation near the nose point, outward velocity component is induced near
the wall. This outward velocity causes separation of the boundary layer near the nose point
then the separation results in the generation of a secondary vortex of clockwise rotation. As
the secondary vortex moves downstream, it becomes more circular in shape. The vortex near
the body surface at X ≈ 0:6 and Y ≈ 0:4 in Figure 8 is a vortex that is shifted downstream
from the nose point. However, this secondary vortex di�uses and eventually disappears as it
moves further downstream due to the strong viscous e�ect of the boundary layer.
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Figure 7. Instantaneous vorticity and pressure contours of an interaction of a vortex street
with an elliptical leading edge (large-scale vortex street).

To show details of the interaction mechanism clearly, eight instantaneous vorticity contours
in one period are shown in Plate 1 sequentially. By investigating evolutions of vortices in
Plate 1, the origins of all vortices, which can be identi�ed in Figure 7, may be clari�ed.
After examination of the evolutions of vortices, all vortices are categorized according to their
origin in Plate 2. As explained previously, the row of clockwise rotating vortices maintain its
identity clearly throughout the interaction (A1 − A2 − A3 − A4). However, the row of counter-
clockwise rotating vortices loses its identity during the interaction (B1 − B2 − B3 − B4 −
B5). The major contribution for the loss of the vortex strength comes from the interaction
with the body surface (B3), then the vortex is dissipated eventually by the strong viscous
e�ect. A secondary vortex due to the boundary layer separation is generated (C1) and moves
downstream (C2−C3). As the incoming vortices approach the leading edge, the convectional
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Figure 8. Instantaneous velocity �eld of an interaction of a vortex street with an elliptical
leading edge (large-scale vortex street).
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Figure 9. Fluctuation of pressure coe�cients distribution on a body (large-scale vortex street).

velocities of the vortices are decreased. These decreases in the convectional velocities cause
contact of neighbouring vortices and rapid distortion. During this distortion, small parts of
vorticity are separated and move downstream (E1; D1; D2).
In Figure 9, the �uctuations in the pressure distribution on the body surface are shown. As

expected from the pressure contours in Figure 7, local minimums occur at the locations where
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Figure 10. Instantaneous vorticity and pressure contours (small-scale vortex street).

the vortices of clockwise rotation are present. In the experiment of Gursul [3], it is observed
that the amplitude of the �uctuation of the pressure distribution on the body surface does not
decrease monotonically from the global maximum of the amplitude. The phenomenon can be
observed in the present calculation also.

3.2.2. Case B: Interaction of a small-scale vortex street. To test the e�ect of the vortex
street scale on the interaction, the diameter of the upstream cylinder is reduced to 0:24Dbody.
Except the diameter of the upstream cylinder, all conditions are identical with the previous
calculation. Instantaneous vorticity and pressure contours are shown in Figure 10. For this
small-scale vortex street, it can be seen that two rows of vortices preserve their identities after
the interaction with the leading edge. In the experiments of Gursul [3], it is observed that by
reducing the incoming vortex scale, the characteristics of the interaction are changed in the
same manner. For the small-scale vortex street whose ratio of distance between neighbouring
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Figure 11. Fluctuation of pressure coe�cients distribution on a body surface (small-scale vortex street).

vortices to the thickness of the body is 0.81, it is observed in the experiments that the rows of
the incoming vortices maintain their identity throughout the interaction for all o�set distances
�=Dbody = 0:16; 0:39; 0:59.
For the small-scale vortex, the distortions of the vortices occur further upstream. The vor-

tices of counter-clockwise rotation move downwards likewise the large-scale case. However,
for the small-scale vortex, the vortices do not cross the centreline of the body. The centres
of vortices contact with the body at a point slightly shifted from the centreline. After the
collision, those vortices move along the body surface. Although the strengths of vortices of
counter-clockwise rotation are decreased during the interaction, the �uctuations in the pressure
distribution on the body surface are determined by the presence of the vortices of counter-
clockwise rotation. The �uctuation of pressure distribution on the body surface is shown in
Figure 11. Compared with the large-scale vortex street case, the amplitude of �uctuation is
decreased signi�cantly. Since the vortices of counter-clockwise rotation contact with the body
surface at upper side of the body, the amplitude of the pressure �uctuation at X =0:5 is close
to the global maximum of the pressure �uctuation on the body surface whereas the maximum
amplitude appears at X =0 for the large-scale vortex street case.

4. CONCLUSIONS

An algorithm to solve the time accurate incompressible Navier–Stokes equations on an un-
structured grid has been presented. The arti�cial compressibility method has been adapted
successfully for the unsteady �ow using the Roe’s �ux di�erence splitting method and the
implicit method to accelerate the convergence with respect to the pseudotime. A second-order
three-point backward di�erence has been used to approximate the physical time derivatives in
the momentum equations and the physical time step size can be decided without considering
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the stability. The iteration with respect to the pseudotime has been converged fast due to the
implicit method with large local Courant number of 200.
As a validation of the developed unsteady code, the periodic vortex shedding from a circular

cylinder at a Reynolds number of 200 has been calculated. Compared with other recent
numerical results, the centre of each vortex is more closely aligned with the centreline of
the cylinder and the shapes of the vorticity contours are closer to concentric circles. The
calculated results have been compared with available experimental and numerical results.
Good agreements have been achieved for Strouhal number and time history of the drag and
lift coe�cients. In the log–log diagram of the variation of the estimated errors with respect
to the physical time step size, �t, the scheme shows a behaviour which is expected for a
second-order scheme in time.
Finally the code has been applied to analyse the interaction of the vortex street with the el-

liptical leading edge. Due to the �exibility of the unstructured grid, the clustering to the path of
vortex street has been achieved readily, which is crucial to get accurate solutions. The details
of the interaction mechanism have been analysed based on the sequence of evolutions of the
vortices during one period. All the vortices identi�ed in the instantaneous vorticity contours
have been related to one of the three vortices: two incoming vortices of clockwise=counter-
clockwise rotations and the secondary vortex generated by the �ow separation. For the in-
teraction of the large-scale vortex street, one row of vortices loses its identity as a row of
vortices during the interaction. The incoming vortex near the leading edge induces boundary
layer separation and the separation results in generation of the secondary vortex. However,
for the small-scale vortex street, two rows of vortices preserve their identities after the inter-
action with the leading edge. These di�erent types of interaction are in accordance with the
observation in the experiments of Gursul [3]. For the amplitudes of the pressure �uctuations
on the body surface, it is observed that the amplitudes do not decrease monotonically from
the global maximum of the �uctuation amplitude. These tendencies are in agreement with the
experimental results also.
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